
arXiv: 2003.00380
According to the World Health Organization(WHO), it is estimated that approximately 1.3 billion people live with some forms of vision impairment globally, of whom 36 million are blind. Due to their disability, engaging these minority into the society is a challenging problem. The recent rise of smart mobile phones provides a new solution by enabling blind users' convenient access to the information and service for understanding the world. Users with vision impairment can adopt the screen reader embedded in the mobile operating systems to read the content of each screen within the app, and use gestures to interact with the phone. However, the prerequisite of using screen readers is that developers have to add natural-language labels to the image-based components when they are developing the app. Unfortunately, more than 77% apps have issues of missing labels, according to our analysis of 10,408 Android apps. Most of these issues are caused by developers' lack of awareness and knowledge in considering the minority. And even if developers want to add the labels to UI components, they may not come up with concise and clear description as most of them are of no visual issues. To overcome these challenges, we develop a deep-learning based model, called LabelDroid, to automatically predict the labels of image-based buttons by learning from large-scale commercial apps in Google Play. The experimental results show that our model can make accurate predictions and the generated labels are of higher quality than that from real Android developers.
Accepted to 42nd International Conference on Software Engineering
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, H.5.0, Computer Vision and Pattern Recognition (cs.CV), D.2; H.5.0, Computer Science - Human-Computer Interaction, Computer Science - Computer Vision and Pattern Recognition, D.2, Human-Computer Interaction (cs.HC)
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, H.5.0, Computer Vision and Pattern Recognition (cs.CV), D.2; H.5.0, Computer Science - Human-Computer Interaction, Computer Science - Computer Vision and Pattern Recognition, D.2, Human-Computer Interaction (cs.HC)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 96 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
