Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>This work addresses the problem of author name homonymy in the Web of Science. Aiming for an efficient, simple and straightforward solution, we introduce a novel probabilistic similarity measure for author name disambiguation based on feature overlap. Using the researcher-ID available for a subset of the Web of Science, we evaluate the application of this measure in the context of agglomeratively clustering author mentions. We focus on a concise evaluation that shows clearly for which problem setups and at which time during the clustering process our approach works best. In contrast to most other works in this field, we are sceptical towards the performance of author name disambiguation methods in general and compare our approach to the trivial single-cluster baseline. Our results are presented separately for each correct clustering size as we can explain that, when treating all cases together, the trivial baseline and more sophisticated approaches are hardly distinguishable in terms of evaluation results. Our model shows state-of-the-art performance for all correct clustering sizes without any discriminative training and with tuning only one convergence parameter.
Proceedings of JCDL 2018
FOS: Computer and information sciences, Probabilities, Computer Science - Machine Learning, Computer Science - Computation and Language, Author Disambiguation, Machine Learning (stat.ML), Computer Science - Information Retrieval, Machine Learning (cs.LG), Statistics - Machine Learning, Computation and Language (cs.CL), Information Retrieval (cs.IR), Agglomerative Clustering
FOS: Computer and information sciences, Probabilities, Computer Science - Machine Learning, Computer Science - Computation and Language, Author Disambiguation, Machine Learning (stat.ML), Computer Science - Information Retrieval, Machine Learning (cs.LG), Statistics - Machine Learning, Computation and Language (cs.CL), Information Retrieval (cs.IR), Agglomerative Clustering
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 5 | |
| downloads | 13 |

Views provided by UsageCounts
Downloads provided by UsageCounts