<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractSocial Media (SM) has become a popular medium for individuals to share their opinions on various topics, including politics, social issues, and daily affairs. During controversial events such as political elections, active users often proclaim their stance and try to persuade others to support them. However, disparities in participation levels can lead to misperceptions and cause analysts to misjudge the support for each side. For example, current models usually rely on content production and overlook a vast majority of civically engaged users who passively consume information. These “silent users” can significantly impact the democratic process despite being less vocal. Accounting for the stances of this silent majority is critical to improving our reliance on SM to understand and measure social phenomena. Thus, this study proposes and evaluates a new approach for silent users’ stance prediction based on collaborative filtering and Graph Convolutional Networks, which exploits multiple relationships between users and topics. Furthermore, our method allows us to describe users with different stances and online behaviors. We demonstrate its validity using real-world datasets from two related political events. Specifically, we examine user attitudes leading to the Chilean constitutional referendums in 2020 and 2022 through extensive Twitter datasets. In both datasets, our model outperforms the baselines by over 9% at the edge- and the user level. Thus, our method offers an improvement in effectively quantifying the support and creating a multidimensional understanding of social discussions on SM platforms, especially during polarizing events.
Dewey Decimal Classification::500 | Naturwissenschaften::540 | Chemie, Recommendation system, Computer applications to medicine. Medical informatics, Collaborative filtering, R858-859.7, Graph convolutional networks, Stance prediction
Dewey Decimal Classification::500 | Naturwissenschaften::540 | Chemie, Recommendation system, Computer applications to medicine. Medical informatics, Collaborative filtering, R858-859.7, Graph convolutional networks, Stance prediction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |