Downloads provided by UsageCounts
pmid: 17626847
Diffraction restricts the ability of most electromagnetic devices to image or selectively target objects smaller than the wavelength. We describe planar subwavelength structures capable of focusing well beyond the diffraction limit, operating at arbitrary frequencies. The structure design, related to that of Fresnel plates, forces the input field to converge to a spot on the focal plane. However, unlike the diffraction-limited zone plates, for which focusing results from the interference of traveling waves, the subwavelength plates control the near field and, as such, their superlensing properties originate from a static form of interference. Practical implementations of these plates hold promise for near-field data storage, noncontact sensing, imaging, and nanolithography applications.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 191 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 17 | |
| downloads | 22 |

Views provided by UsageCounts
Downloads provided by UsageCounts