Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Scandinavian Journal of Medicine and Science in Sports
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reducing the peak tibial acceleration of running by music‐based biofeedback: A quasi‐randomized controlled trial

Authors: Pieter Van den Berghe; Rud Derie; Pieter Bauwens; Joeri Gerlo; Veerle Segers; Marc Leman; Dirk De Clercq;

Reducing the peak tibial acceleration of running by music‐based biofeedback: A quasi‐randomized controlled trial

Abstract

BackgroundRunning retraining with the use of biofeedback on an impact measure has been executed or evaluated in the biomechanics laboratory. Here, the execution and evaluation of feedback‐driven retraining are taken out of the laboratory.PurposeTo determine whether biofeedback can reduce the peak tibial acceleration with or without affecting the running cadence in a 3‐week retraining protocol.Study DesignQuasi‐randomized controlled trial.MethodsTwenty runners with high peak tibial acceleration were allocated to either the retraining (n = 10, 32.1 ± 7.8 years, 10.9 ± 2.8 g) or control (n = 10, 39.1 ± 10.4 years, 13.0 ± 3.9 g) groups. They performed six running sessions in an athletic training environment. A body‐worn system collected axial tibial acceleration and provided real‐time feedback. The retraining group received music‐based biofeedback in a faded feedback scheme. Pink noise was superimposed on tempo‐synchronized music when the peak tibial acceleration was ≥70% of the runner's baseline. The control group received tempo‐synchronized music, which acted as a placebo for blinding purposes. Speed feedback was provided to obtain a stable running speed of ~2.9 m·s−1. Peak tibial acceleration and running cadence were evaluated.ResultsA significant group‐by‐feedback interaction effect was detected for peak tibial acceleration. The experimental group had a decrease in peak tibial acceleration by 25.5% (mean: 10.9 ± 2.8 g versus 8.1 ± 3.9 g, p = 0.008, d = 1.08, mean difference = 2.77 [0.94, 4.61]) without changing the running cadence. The control group had no statistically significant change in peak tibial acceleration nor in running cadence.ConclusionThe retraining protocol was effective at reducing the peak tibial acceleration in high‐impact runners by reacting to music‐based biofeedback that was provided in real time per wearable technology in a training environment. This reduction magnitude may have meaningful influences on injury risk.

Country
Belgium
Keywords

FEEDBACK, Tibia, Physical Therapy, running gait, Acceleration, feedback, Biofeedback, Psychology, Sports Therapy and Rehabilitation, BIOMECHANICS, biomechanics, Biomechanical Phenomena, RUNNERS, Medicine and Health Sciences, INJURY, impact, SHOCK, Humans, Orthopedics and Sports Medicine, sonification, GAIT, Gait, Music

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 6
  • 2
    views
    6
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
18
Top 10%
Average
Top 10%
2
6
Green