Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Photochemistry and P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Photochemistry and Photobiology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Photochemistry and Photobiology
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
ZENODO
Article . 2008
Data sources: ZENODO
ZENODO
Article . 2008
Data sources: ZENODO
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Action Spectrum Conversion Factors that Change Erythemally Weighted to Previtamin D3‐weighted UV Doses†

Authors: Pope, Stanley J.; Holick, Michael F.; Mackin, Steven; Godar, Dianne E.;

Action Spectrum Conversion Factors that Change Erythemally Weighted to Previtamin D3‐weighted UV Doses†

Abstract

AbstractMany solar UV measurements, either terrestrial or personal, weight the raw data by the erythemal action spectrum. However, a problem arises when one tries to estimate the benefit of vitamin D3 production based on erythemally weighted outdoor doses, like those measured by calibrated R‐B meters or polysulphone badges, because the differences between action spectra give dissimilar values. While both action spectra peak in the UVB region, the erythemal action spectrum continues throughout the UVA region while the previtamin D3 action spectrum stops near that boundary. When one uses the previtamin D3 action spectrum to weight the solar spectra (Deff), one gets a different contribution in W m−2 than what the erythemally weighted data predicts (Eeff). Thus, to do proper benefit assessments, one must incorporate action spectrum conversion factors (ASCF) into the calculations to change erythemally weighted to previtamin D3‐weighted doses. To date, all benefit assessments for vitamin D3 production in human skin from outdoor exposures are overestimates because they did not account for the different contributions of each action spectrum with changing solar zenith angle and ozone and they did not account for body geometry. Here we describe how to normalize the ratios of the effective irradiances (Deff/Eeff) to get ASCF that change erythemally weighted to previtamin D3‐weighted doses. We also give the ASCF for each season of the year in the northern hemisphere every 5° from 30°N to 60°N, based on ozone values. These ASCF, along with geometry conversion factors and other information, can give better vitamin D3 estimates from erythemally weighted outdoor doses.

Keywords

Time Factors, Geography, Ultraviolet Rays, Dose-Response Relationship, Radiation, Ozone, Erythema, Humans, Spectrophotometry, Ultraviolet, Seasons, Cholecalciferol

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 26
    download downloads 16
  • 26
    views
    16
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
33
Top 10%
Top 10%
Top 10%
26
16
hybrid