Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Zoological Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2009
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Zoological Journal of the Linnean Society
Article . 2009 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrialcox1

Authors: Santagata, Scott; Cohen, Bernard L.;

Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrialcox1

Abstract

A matrix of 24 morphodevelopmental characters and an alignment of small subunit (SSU) and large subunit (LSU) rDNA nuclear and cox1 mitochondrial gene sequences (∼4500 sites) were compiled from up to 12 phoronids including most named taxa, but probably constituting only a portion of worldwide diversity. Morphological data were analysed by weighted parsimony; sequence data by maximum and Bayesian likelihood, both with Phoronis ovalis as the local outgroup. Morphological and sequence-based phylogenies were similar, but not fully congruent. Phoronid rDNAs were almost free from mutational saturation, but cox1 showed strong saturation unless distant outgroups and P. ovalis were omitted, suggesting that many phoronid divergences are old (≥100 Myr). rDNA divergence between named phoronid taxa is generally substantial, but Phoronopsis harmeri (from Vladivostock) and Phoronopsis viridis (from California) are genetically close enough to be conspecific. In another alignment, of 24 taxa, phoronid rDNAs were combined with data from brachiopods and distant (molluscan) outgroups. The relative ages of divergence between phoronids and their brachiopod sister-groups, of the split between the P. ovalis and non-ovalis lineages, and of other phoronid splits, were estimated from this alignment with a Bayesian lognormal uncorrelated molecular clock model. Although confidence limits (95% highest probability density) are wide, the results are compatible with an Early Cambrian split between phoronids and brachiopods and with the Upper Devonian latest age suggested for the P. ovalis/non-ovalis split by the putative phoronid ichnofossil, Talpina. Most other ingroup splits appear to be ∼50–200 Myr old. Inclusion of phoronids with brachiopods in the crown clade pan-Brachiopoda suggests that a distinctive metamorphosis and absence of mineralization are ancestral phoronid apomorphies. Worldwide diversity and possible associations between character-states and life-history attributes deserve comprehensive further study.

Related Organizations
Keywords

Biodiversity, Taxonomy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 7
  • 2
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
52
Top 10%
Top 10%
Top 10%
2
7
Green
bronze