Downloads provided by UsageCounts
pmid: 15242409
Summary: The genes that encode immunoglobulins and T‐cell receptors must be assembled from the multiple variable (V), joining (J), and sometimes diversity (D) gene segments present in the germline loci. This process of V(D)J recombination is the major source of the immense diversity of the immune repertoire of jawed vertebrates. The recombinase that initiates the process, recombination‐activating genes 1 (RAG1) and RAG2, belongs to a large family that includes transposases and retroviral integrases. RAG1/2 cleaves the DNA adjacent to the gene segments to be recombined, and the segments are then joined together by DNA repair factors. A decade of biochemical research on RAG1/2 has revealed many similarities to transposition, culminating with the observation that RAG1/2 can carry out transpositional strand transfer. Here, we discuss the parallels between V(D)J recombination and transposition, focusing specifically on the assembly of the recombination nucleoprotein complex, the mechanism of cleavage, the disassembly of post‐cleavage complexes, and aberrant reactions carried out by the recombinase that do not result in successful locus rearrangement and may be deleterious to the organism. This work highlights the considerable diversity of transposition systems and their relation to V(D)J recombination.
Homeodomain Proteins, DNA Repair, Nuclear Proteins, Gene Rearrangement, T-Lymphocyte, DNA-Binding Proteins, DNA Transposable Elements, Humans, Gene Rearrangement, B-Lymphocyte, VDJ Recombinases, Signal Transduction
Homeodomain Proteins, DNA Repair, Nuclear Proteins, Gene Rearrangement, T-Lymphocyte, DNA-Binding Proteins, DNA Transposable Elements, Humans, Gene Rearrangement, B-Lymphocyte, VDJ Recombinases, Signal Transduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 92 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 41 | |
| downloads | 38 |

Views provided by UsageCounts
Downloads provided by UsageCounts