Downloads provided by UsageCounts
Given the increasing popularity of wearable devices, this paper explores the potential to use wearables for steering and driver tracking. Such capability would enable novel classes of mobile safety applications without relying on information or sensors in the vehicle. In particular, we study how wrist-mounted inertial sensors, such as those in smart watches and fitness trackers, can track steering wheel usage and angle. In particular, tracking steering wheel usage and turning angle provide fundamental techniques to improve driving detection, enhance vehicle motion tracking by mobile devices and help identify unsafe driving. The approach relies on motion features that allow distinguishing steering from other confounding hand movements. Once steering wheel usage is detected, it further uses wrist rotation measurements to infer steering wheel turning angles. Our on-road experiments show that the technique is 99% accurate in detecting steering wheel usage and can estimate turning angles with an average error within 3.4 degrees.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 3 | |
| downloads | 20 |

Views provided by UsageCounts
Downloads provided by UsageCounts