Downloads provided by UsageCounts
pmid: 19964323
Multi-electrode catheters can be placed transvenously and positioned on the atrial endocardial surface in order to sample the chaotic electrical activity taking place during atrial fibrillation. We consider here the possibility of placing an array of electrodes over a relatively small, and hence roughly planar, region of the atrial surface in order to examine local activity patterns. This provides a spatially coarse but temporally fine sampling of electrical activity that can be expressed at each point in time as the convolution of the true electrical excitation of the tissue with a hyperbolic point spread function. We demonstrate the deconvolution of sampled signals using a polynomial approximation of the true electrical activity. When the deconvolution is unconstrained the inverse problem is poorly conditioned, showing that a high spatial sampling rate is required for accurate reconstructions of atrial activity in the vicinity of the electrode array. We discuss ways in which the conditioning of the problem might be improved through the application of constraints on the solution.
Models, Statistical, Time Factors, Normal Distribution, Action Potentials, Reproducibility of Results, Heart, Signal Processing, Computer-Assisted, Models, Theoretical, Catheterization, Electrodes, Implanted, Electrophysiology, Atrial Fibrillation, Humans, Nanotechnology, Electrodes
Models, Statistical, Time Factors, Normal Distribution, Action Potentials, Reproducibility of Results, Heart, Signal Processing, Computer-Assisted, Models, Theoretical, Catheterization, Electrodes, Implanted, Electrophysiology, Atrial Fibrillation, Humans, Nanotechnology, Electrodes
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 2 | |
| downloads | 4 |

Views provided by UsageCounts
Downloads provided by UsageCounts