Downloads provided by UsageCounts
doi: 10.1109/ic2e.2015.56
With increasing demands for High Performance Computing (HPC), new ideas and methods are emerged to utilize computing resources more efficiently. Cloud Computing appears to provide benefits such as resource pooling, broad network access and cost efficiency for the HPC applications. However, moving the HPC applications to the cloud can face several key challenges, primarily, the virtualization overhead, multi-tenancy and network latency. Software-Defined Networking (SDN) as an emerging technology appears to pave the road and provide dynamic manipulation of cloud networking such as topology, routing, and bandwidth allocation. This paper presents a new scheme called ASETS which targets dynamic configuration and monitoring of cloud networking using SDN to improve the performance of HPC applications and in particular task scheduling for HPC as a service on the cloud (HPCaaS). Further, SETSA, (SDN-Empowered Task Scheduler Algorithm) is proposed as a novel task scheduling algorithm for the offered ASETS architecture. SETSA monitors the network bandwidth to take advantage of its changes when submitting tasks to the virtual machines. Empirical analysis of the algorithm in different case scenarios show that SETSA has significant potentials to improve the performance of HPCaaS platforms by increasing the bandwidth efficiency and decreasing task turnaround time. In addition, SETSAW, (SETSA Window) is proposed as an improvement of the SETSA algorithm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 115 | |
| downloads | 27 |

Views provided by UsageCounts
Downloads provided by UsageCounts