
Abstract Network automation is a necessity in order to meet the unprecedented demand in the future networks and zero touch network architecture is proposed to cater such requirements. Closed-loop and artificial intelligence are key enablers in this proposed architecture in critical elements such as security. Apart from the arising privacy concerns, machine learning models can also face resource limitations. Federated learning is a machine learning-based technique that addresses both privacy and communication efficiency issues. Therefore, we propose a federated learning-based model incorporating the ZSM architecture for network automation. The paper also contains the simulations and results of the proposed multi-stage federated learning model that uses the UNSW-NB15 dataset.
Network automation, Federated learning, Security, 5G, ZSM, beyond 5G
Network automation, Federated learning, Security, 5G, ZSM, beyond 5G
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
