Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://zenodo.org/r...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://zenodo.org/record/1267...
Article
License: CC 0
Data sources: UnpayWall
https://doi.org/10.1109/embc.2...
Article . 2012 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

Titanium-based, fenestrated, in-plane microneedles for passive ocular drug delivery

Authors: Omid Khandan; Amin Famili; Malik Y. Kahook; Masaru P. Rao;

Titanium-based, fenestrated, in-plane microneedles for passive ocular drug delivery

Abstract

Drug delivery to the eye remains a key challenge, due to limitations inherent to prevailing delivery techniques. For example, while topical delivery offers simplicity and safety, its efficacy is often limited by poor bioavailability, due to natural transport barriers and clearance mechanisms. Similarly, while intravitreal injections performed across the ocular tunic provide means for circumventing such limitations, non-negligible potential for retinal detachment and other complications adversely affects safety. Herein, we discuss our initial efforts to address these limitations through development of titanium-based microneedles (MNs) which seek to provide a safer, simpler, and more efficacious means of ocular drug delivery. Devices with in-plane geometry and through-thickness fenestrations that serve as drug reservoirs for passive delivery via diffusive transport from fast-dissolving coatings are demonstrated. Details regarding device design, fabrication, and mechanical testing are presented, as are results from preliminary coating characterization and insertion testing in ex vivo rabbit cornea.

Keywords

Titanium, Finite Element Analysis, Biological Availability, Eye, Permeability, Cornea, Drug Delivery Systems, Spectrometry, Fluorescence, Needles, Intravitreal Injections, Microscopy, Electron, Scanning, Animals, Rabbits, Stress, Mechanical

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 13
  • 4
    views
    13
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
11
Average
Average
Average
4
13