
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The rapid progression of the Internet of Things allows the seamless integration of cyber and physical environments, thus creating an overall hyper-connected ecosystem. It is evident that this new reality provides several capabilities and benefits, such as real-time decision-making and increased efficiency and productivity. However, it also raises crucial cybersecurity issues that can lead to disastrous consequences due to the vulnerable nature of the Internet model and the new cyber risks originating from the multiple and heterogeneous technologies involved in the loT. Therefore, intrusion detection and prevention are valuable and necessary mechanisms in the arsenal of the loT security. In light of the aforementioned remarks, in this paper, we introduce an Artificial Intelligence (AI)-powered Intrusion Detection and Prevention System (IDPS) that can detect and mitigate potential loT cyberattacks. For the detection process, Deep Neural Networks (DNNs) are used, while Software Defined Networking (SDN) and Q-Learning are combined for the mitigation procedure. The evaluation analysis demonstrates the detection efficiency of the proposed IDPS, while Q- Learning converges successfully in terms of selecting the appropriate mitigation action.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 16 | |
downloads | 12 |