
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The long-standing problem of growing a commensurate crystalline oxide interface with silicon has been solved. Alkaline earth and perovskite oxides can be grown in perfect registry on the (001) face of silicon, totally avoiding the amorphous silica phase that ordinarily forms when silicon is exposed to an oxygen containing environment. The physics of the heteroepitaxy lies in establishing a sequenced transition that uniquely addresses the thermodynamics of a layer-by-layer energy minimization at the interface. A metal-oxide-semiconductor capacitor using SrTiO{sub 3} as an alternative to SiOthinsp{sub 2} yields the extraordinary result of t{sub eq}{lt}10 {Angstrom} . {copyright} {ital 1998} {ital The American Physical Society}
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 937 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
views | 60 | |
downloads | 42 |