Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://zenodo.org/r...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://zenodo.org/record/1233...
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 1997 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
versions View all 1 versions
addClaim

Langmuir probe measurements in an inductively coupled plasma source

Authors: A. Schwabedissen; E. C. Benck; J. R. Roberts;

Langmuir probe measurements in an inductively coupled plasma source

Abstract

Measurements of the plasma potential, electron density, effective electron temperature, and electron energy distribution function (EEDF) have been performed with Langmuir probes in planar, electrostatically shielded, low-pressure inductively coupled plasmas. The plasma source is a modification of the Gaseous Electronics Conference RF Reference Cell [P. J. Hargis {ital et al.}, Rev. Sci. Instrum. {bold 65}, 140 (1994)] with the upper electrode replaced by a five-turn planar coil and a quartz vacuum interface. Four different rare gases (Ar, Kr, Xe, and Ne), a He:Ar (96:4) mixture, and O{sub 2} and N{sub 2} were investigated. We found that with increasing ionization potential of the rare gas the electron density decreases, while the effective electron temperature and the plasma potential increase. Non-Maxwellian EEDFs were observed for all energies for O{sub 2} and N{sub 2} discharges as well as for the rare gases above the energy range for elastic collisions. Spatially resolved measurements confirm that the EEDF is determined by spatially averaged quantities instead of the local electric field. {copyright} {ital 1997} {ital The American Physical Society}

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 42
    download downloads 31
  • 42
    views
    31
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
106
Top 10%
Top 10%
Top 10%
42
31