
doi: 10.1101/712687
AbstractPhysiology and behaviour are controlled by neuropeptide signalling systems comprising peptide ligands and cognate receptors. Molecular phylogenetics combined with experimental identification of neuropeptide-receptor pairs has revealed that many neuropeptide signalling systems originated in the urbilaterian common ancestor of protostomes and deuterostomes. Neuropeptide-Y/neuropeptide-F (NPY/NPF)-type signalling is one such example, whereas NPY/NPF-related short-NPF (sNPF)-type signalling has hitherto only been identified in protostomes. Here we report the discovery of a neuropeptide (pQDRSKAMQAERTGQLRRLNPRF-NH2) that is the ligand for an sNPF-type receptor in a deuterostome, the starfish Asterias rubens (Phylum Echinodermata). Informed by phylogenetic analysis of sequence data, we conclude that the paralogous NPY/NPF-type and sNPF-type signalling systems originated in Urbilateria but NPY/NPF-type signalling was lost in echinoderms. Furthermore, we present evidence that sNPF-type peptides are orthologs of vertebrate prolactin-releasing peptides. Our findings demonstrate the importance of experimental studies on echinoderms for reconstructing the evolutionary history of neuropeptide signalling systems.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
