Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.biorxiv.org/conten...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.1101/408385...
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CORnet: Modeling the Neural Mechanisms of Core Object Recognition

Authors: Kubilius, Jonas; Schrimpf, Martin; Nayebi, Aran; Bear, Daniel; Yamins, Daniel L. K.; DiCarlo, James J.;

CORnet: Modeling the Neural Mechanisms of Core Object Recognition

Abstract

AbstractDeep artificial neural networks with spatially repeated processing (a.k.a., deep convolutional ANNs) have been established as the best class of candidate models of visual processing in primate ventral visual processing stream. Over the past five years, these ANNs have evolved from a simple feedforward eight-layer architecture in AlexNet to extremely deep and branching NAS-Net architectures, demonstrating increasingly better object categorization performance and increasingly better explanatory power of both neural and behavioral responses. However, from the neuroscientist’s point of view, the relationship between such very deep architectures and the ventral visual pathway is incomplete in at least two ways. On the one hand, current state-of-the-art ANNs appear to be too complex (e.g., now over 100 levels) compared with the relatively shallow cortical hierarchy (4-8 levels), which makes it difficult to map their elements to those in the ventral visual stream and to understand what they are doing. On the other hand, current state-of-the-art ANNs appear to be not complex enough in that they lack recurrent connections and the resulting neural response dynamics that are commonplace in the ventral visual stream. Here we describe our ongoing efforts to resolve both of these issues by developing a “CORnet” family of deep neural network architectures. Rather than just seeking high object recognition performance (as the state-of-the-art ANNs above), we instead try to reduce the model family to its most important elements and then gradually build new ANNs with recurrent and skip connections while monitoring both performance and the match between each new CORnet model and a large body of primate brain and behavioral data. We report here that our current best ANN model derived from this approach (CORnet-S) is among the top models on Brain-Score, a composite benchmark for comparing models to the brain, but is simpler than other deep ANNs in terms of the number of convolutions performed along the longest path of information processing in the model. All CORnet models are available at github.com/dicarlolab/CORnet, and we plan to up-date this manuscript and the available models in this family as they are produced.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 14
  • 4
    views
    14
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
109
Top 1%
Top 10%
Top 1%
4
14
Green