Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatial omics representation and functional tissue module inference using graph Fourier transform

Authors: Yuzhou Chang; Jixin Liu; Anjun Ma; Sizun Jiang; Jordan Krull; Yao Yu Yeo; Yang Liu; +8 Authors

Spatial omics representation and functional tissue module inference using graph Fourier transform

Abstract

AbstractTissue module (TM) is a spatially organized tissue region and executes specialized biological functions, recurring and varying at different tissue sites. However, the computational identification of TMs poses challenges due to their convoluted biological functions, poorly-defined molecular features, and varying spatially organized patterns. Here, we present a hypothesis-free graph Fourier transform model, SpaGFT, to represent spatially organized features using the Fourier coefficients, leading to an accurate representation of spatially variable genes and proteins and the characterization of TM at a fast computational speed. We implemented sequencing-based and imaging-based spatial transcriptomics, spatial-CITE-seq, and spatial proteomics to identify spatially variable genes and proteins, define TM identities, and infer convoluted functions among TMs in mouse brains and human lymph nodes. We collected a human tonsil sample and performed CODEX to accurately demonstrate molecular and cellular variability within the secondary follicle structure. The superior accuracy, scalability, and interpretability of SpaGFT indicate that it is an effective representation of spatially-resolved omics data and an essential tool for bringing new insights into molecular tissue biology.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?