<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractMetabolic pathway inference from genomic sequence information is an integral scientific problem with wide ranging applications in the life sciences. As sequencing throughput increases, scalable and performative methods for pathway prediction at different levels of genome complexity and completion become compulsory. In this paper, we present reMap (relabelingmetabolic pathway data with groups) a simple, and yet, generic framework, that performs relabeling examples to a different set of labels, characterized as groups. A pathway group is comprised of a subset of statistically correlated pathways that can be further distributed between multiple pathway groups. This has important implications for pathway prediction, where a learning algorithm can revisit a pathway multiple times across groups to improve sensitivity. The relabeling process in reMap is achieved through an alternating feedback process. In the first feed-forward phase, a minimal subset of pathway groups is picked to label each example. In the second feed-backward phase, reMap’s internal parameters are updated to increase the accuracy of mapping examples to pathway groups. The resulting pathway group dataset is then be used to train a multi-label learning algorithm. reMap’s effectiveness was evaluated on metabolic pathway prediction where resulting performance metrics equaled or exceeded other prediction methods on organismal genomes with improved predictive performance.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |