
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
L'analyse et l'extraction de données de trajectoire nécessitent des mesures de distance et de similitude, et la qualité de leurs résultats est directement liée à ces mesures. Plusieurs mesures de similarité initialement proposées pour les séries chronologiques ont été adaptées pour fonctionner avec des données de trajectoire, mais ces approches ont été développées pour des données bien conduites qui ne présentent généralement pas l'incertitude et l'hétérogénéité introduites par le processus d'échantillonnage pour obtenir des trajectoires. Plus récemment, des mesures de similarité ont été proposées spécifiquement pour les données de trajectoire, mais elles reposent sur des représentations d'incertitude de mouvement simplistes, telles que l'interpolation linéaire. Dans cet article, nous proposons une nouvelle fonction de distance, et une nouvelle mesure de similarité qui utilise une représentation elliptique des trajectoires, étant plus robuste à l'incertitude de mouvement causée par le taux d'échantillonnage et l'hétérogénéité de ce type de données. Les expériences utilisant des données réelles montrent que notre proposition est plus précise et plus robuste que les travaux connexes.
El análisis de datos de trayectoria y la minería requieren medidas de distancia y similitud, y la calidad de sus resultados está directamente relacionada con esas medidas. Varias medidas de similitud originalmente propuestas para series de tiempo se adaptaron para trabajar con datos de trayectoria, pero estos enfoques se desarrollaron para datos de buen comportamiento que generalmente no tienen la incertidumbre y heterogeneidad introducidas por el proceso de muestreo para obtener trayectorias. Más recientemente, se propusieron medidas de similitud específicamente para los datos de trayectoria, pero se basan en representaciones simplistas de incertidumbre de movimiento, como la interpolación lineal. En este artículo, proponemos una nueva función de distancia y una nueva medida de similitud que utiliza una representación elíptica de trayectorias, siendo más robusta a la incertidumbre de movimiento causada por la tasa de muestreo y la heterogeneidad de este tipo de datos. Los experimentos que utilizan datos reales muestran que nuestra propuesta es más precisa y sólida que el trabajo relacionado.
Trajectory data analysis and mining require distance and similarity measures, and the quality of their results is directly related to those measures. Several similarity measures originally proposed for time-series were adapted to work with trajectory data, but these approaches were developed for well-behaved data that usually do not have the uncertainty and heterogeneity introduced by the sampling process to obtain trajectories. More recently, similarity measures were proposed specifically for trajectory data, but they rely on simplistic movement uncertainty representations, such as linear interpolation. In this article, we propose a new distance function, and a new similarity measure that uses an elliptical representation of trajectories, being more robust to the movement uncertainty caused by the sampling rate and the heterogeneity of this kind of data. Experiments using real data show that our proposal is more accurate and robust than related work.
يتطلب تحليل بيانات المسار والتعدين مقاييس المسافة والتشابه، وترتبط جودة نتائجها ارتباطًا مباشرًا بتلك المقاييس. تم تكييف العديد من مقاييس التشابه المقترحة أصلاً للسلاسل الزمنية للعمل مع بيانات المسار، ولكن تم تطوير هذه الأساليب للبيانات حسنة السلوك التي لا تحتوي عادة على عدم اليقين وعدم التجانس الذي أدخلته عملية أخذ العينات للحصول على المسارات. في الآونة الأخيرة، تم اقتراح مقاييس التشابه على وجه التحديد لبيانات المسار، لكنها تعتمد على تمثيلات عدم اليقين المبسطة للحركة، مثل الاستيفاء الخطي. في هذه المقالة، نقترح دالة مسافة جديدة، ومقياس تشابه جديد يستخدم تمثيلًا بيضاويًا للمسارات، كونه أكثر قوة لعدم اليقين في الحركة الناجم عن معدل أخذ العينات وعدم تجانس هذا النوع من البيانات. تُظهر التجارب التي تستخدم بيانات حقيقية أن اقتراحنا أكثر دقة وقوة من العمل ذي الصلة.
Artificial intelligence, Similarity Search, Astronomy, FOS: Political science, Trajectory Data Mining and Analysis, Trajectory, FOS: Law, Clustering of Time Series Data and Algorithms, Filter (signal processing), Anomaly Detection in High-Dimensional Data, Artificial Intelligence, Similarity measure, FOS: Mathematics, Image (mathematics), Similarity (geometry), Data mining, Political science, Dimensionality Reduction, Dynamic Time Warping, Motion (physics), Physics, Politics, Sampling (signal processing), Movement Similarity, Raw Trajectory Similarity, Elliptical Trajectory Representation, Dynamic Threshold Similarity, Parameter free Similarity Measure, Computer science, Trajectory Data Mining, Signal Processing, Computer Science, Physical Sciences, Similarity Measures, Interpolation (computer graphics), Computer vision, Representation (politics), Law, Mathematics
Artificial intelligence, Similarity Search, Astronomy, FOS: Political science, Trajectory Data Mining and Analysis, Trajectory, FOS: Law, Clustering of Time Series Data and Algorithms, Filter (signal processing), Anomaly Detection in High-Dimensional Data, Artificial Intelligence, Similarity measure, FOS: Mathematics, Image (mathematics), Similarity (geometry), Data mining, Political science, Dimensionality Reduction, Dynamic Time Warping, Motion (physics), Physics, Politics, Sampling (signal processing), Movement Similarity, Raw Trajectory Similarity, Elliptical Trajectory Representation, Dynamic Threshold Similarity, Parameter free Similarity Measure, Computer science, Trajectory Data Mining, Signal Processing, Computer Science, Physical Sciences, Similarity Measures, Interpolation (computer graphics), Computer vision, Representation (politics), Law, Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 5 | |
downloads | 32 |