Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Chemi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Chemical Physics
Article
License: CC 0
Data sources: UnpayWall
The Journal of Chemical Physics
Article . 1992 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method

Authors: Daniel T. Colbert; William H. Miller;

A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method

Abstract

A novel discrete variable representation (DVR) is introduced for use as the L2 basis of the S-matrix version of the Kohn variational method [Zhang, Chu, and Miller, J. Chem. Phys. 88, 6233 (1988)] for quantum reactive scattering. (It can also be readily used for quantum eigenvalue problems.) The primary novel feature is that this DVR gives an extremely simple kinetic energy matrix (the potential energy matrix is diagonal, as in all DVRs) which is in a sense ‘‘universal,’’ i.e., independent of any explicit reference to an underlying set of basis functions; it can, in fact, be derived as an infinite limit using different basis functions. An energy truncation procedure allows the DVR grid points to be adapted naturally to the shape of any given potential energy surface. Application to the benchmark collinear H+H2→H2+H reaction shows that convergence in the reaction probabilities is achieved with only about 15% more DVR grid points than the number of conventional basis functions used in previous S-matrix Kohn calculations. Test calculations for the collinear Cl+HCl→ClH+Cl reaction shows that the unusual dynamical features of heavy+light-heavy reactions are also well described by this approach. Since DVR approaches avoid having to evaluate integrals in order to obtain the Hamiltonian matrix and since a DVR Hamiltonian matrix is extremely sparse, this DVR version of the S-matrix Kohn approach should make it possible to deal with more complex chemical reactions than heretofore possible.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 53
    download downloads 45
  • 53
    views
    45
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2K
Top 0.1%
Top 0.1%
Top 1%
53
45
hybrid