Downloads provided by UsageCounts
doi: 10.1063/1.462100
A novel discrete variable representation (DVR) is introduced for use as the L2 basis of the S-matrix version of the Kohn variational method [Zhang, Chu, and Miller, J. Chem. Phys. 88, 6233 (1988)] for quantum reactive scattering. (It can also be readily used for quantum eigenvalue problems.) The primary novel feature is that this DVR gives an extremely simple kinetic energy matrix (the potential energy matrix is diagonal, as in all DVRs) which is in a sense ‘‘universal,’’ i.e., independent of any explicit reference to an underlying set of basis functions; it can, in fact, be derived as an infinite limit using different basis functions. An energy truncation procedure allows the DVR grid points to be adapted naturally to the shape of any given potential energy surface. Application to the benchmark collinear H+H2→H2+H reaction shows that convergence in the reaction probabilities is achieved with only about 15% more DVR grid points than the number of conventional basis functions used in previous S-matrix Kohn calculations. Test calculations for the collinear Cl+HCl→ClH+Cl reaction shows that the unusual dynamical features of heavy+light-heavy reactions are also well described by this approach. Since DVR approaches avoid having to evaluate integrals in order to obtain the Hamiltonian matrix and since a DVR Hamiltonian matrix is extremely sparse, this DVR version of the S-matrix Kohn approach should make it possible to deal with more complex chemical reactions than heretofore possible.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 53 | |
| downloads | 45 |

Views provided by UsageCounts
Downloads provided by UsageCounts