Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Chemi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Chemical Physics
Article
License: CC 0
Data sources: UnpayWall
The Journal of Chemical Physics
Article . 1986 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Structures and phase diagrams of N2 and CO to 13 GPa by x-ray diffraction

Authors: R. L. Mills; Bart Olinger; D. T. Cromer;

Structures and phase diagrams of N2 and CO to 13 GPa by x-ray diffraction

Abstract

The structures and phase transitions of N2 and CO were studied by powder x-ray diffraction from 100 to 300 K and 4 to 13 GPa. Three solid phases, β, δ, and ε, were observed in each material. The known β and δ solids were confirmed to have hexagonal space group P63/mmc and cubic space group Pm3n, respectively. From refinements using photographic x-ray intensities, the new ε-N2 and ε-CO structures were determined to be rhombohedral R3̄c. There are eight ordered molecules in the ε-N2 unit cell with a=5.928 Å and α=85.14° at 110 K and 7.8 GPa, and eight ordered molecules in the ε-CO unit cell with a=6.059 Å and α=85.73° at 100 K and 5.5 GPa. The CO molecules are randomly oriented head to tail. The δ–ε transition takes place through an ordering and small displacement of the N2 and CO molecules, accompanied by a slight extension of the lattice along a cube diagonal. Molar volumes are presented over an expanded P-T region. Recent theoretical calculations using lattice energies, molecular dynamics, and symmetry correlations correctly predict features in the N2 and CO phase diagrams.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    193
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 33
    download downloads 14
  • 33
    views
    14
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
193
Top 10%
Top 1%
Top 10%
33
14
hybrid