Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Applied Physics
Article
License: CC 0
Data sources: UnpayWall
Journal of Applied Physics
Article . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Device physics of single layer organic light-emitting diodes

Authors: B. K. Crone; I. H. Campbell; P. S. Davids; D. L. Smith; C. J. Neef; J. P. Ferraris;

Device physics of single layer organic light-emitting diodes

Abstract

We present experimental and device model results for electron only, hole only, and bipolar organic light-emitting diodes fabricated using a soluble poly (p-phenylene vinylene) based polymer. Current–voltage (I–V) characteristics were measured for a series of electron only devices in which the polymer thickness was varied. The I–V curves were described using a device model from which the electron mobility parameters were extracted. Similarly, the hole mobility parameters were extracted using a device model description of I–V characteristics for a series of hole only devices where the barrier to hole injection was varied by appropriate choices of hole injecting electrode. The electron and hole mobilities extracted from the single carrier devices are then used, without additional adjustable parameters, to describe the measured current–voltage characteristics of a series of bipolar devices where both the device thickness and contacts were varied. The model successfully describes the I–V characteristics of single carrier and bipolar devices as a function of polymer thickness and for structures that are contact limited, space charge limited, and for cases in between. We find qualitative agreement between the device model and measured external luminance for a thickness series of devices. We investigate the sensitivity of the device model calculations to the magnitude of the bimolecular recombination rate prefactor.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 156
    download downloads 31
  • 156
    views
    31
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
74
Top 10%
Top 10%
Top 10%
156
31
hybrid