Downloads provided by UsageCounts
doi: 10.1063/1.3655446
The magnetic field structure in a Polywell device is studied to understand both the physics underlying the electron confinement properties and its estimated performance compared to other cusped devices. Analytical expressions are presented for the magnetic field in addition to expressions for the point and line cusps as a function of device parameters. It is found that at small coil spacings, it is possible for the point cusp losses to dominate over the line cusp losses, leading to longer overall electron confinement. The types of single particle trajectories that can occur are analysed in the context of the magnetic field structure which results in the ability to define two general classes of trajectories, separated by a critical flux surface. Finally, an expression for the single particle confinement time is proposed and subsequently compared with simulation.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 108 | |
| downloads | 16 |

Views provided by UsageCounts
Downloads provided by UsageCounts