Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Chemi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Chemical Physics
Article
License: CC BY
Data sources: UnpayWall
The Journal of Chemical Physics
Article . 2002 . Peer-reviewed
Data sources: Crossref
ZENODO
Article . 2002
Data sources: ZENODO
ZENODO
Article . 2002
Data sources: ZENODO
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exotic isomers of dicyanoacetylene: A density functional theory and ab initio study

Authors: Kołos, Robert;

Exotic isomers of dicyanoacetylene: A density functional theory and ab initio study

Abstract

Prospects for the existence and detection of yet unknown dicyanoacetylene (NCCCCN) isomers are discussed, based on quantum-chemical calculations for linear, hexagonal and branched C4N2 structural variants. It is concluded that apart from dicyanoacetylene itself and its two already discovered isomers, NCCCNC and CNCCNC, at least two other species are of importance: linear CCCNCN and Y-shaped CC(CN)CN (dicyanovinylidene). Combined CCSD(T) and MP4 calculations predict CC(CN)CN and CCCNCN to be 57 kcal/mol and 66 kcal/mol less stable than dicyanoacetylene, respectively. The height of the energy barrier for dicyanoacetylene←dicyanovinylidene isomerization is about 5 kcal/mol. Density functional theory calculations indicate that CCCNCN should give rise to prominent IR absorption bands, two orders of magnitude stronger than those of dicyanoacetylene.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 37
    download downloads 17
  • 37
    views
    17
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
13
Average
Average
Average
37
17
hybrid