Downloads provided by UsageCounts
doi: 10.1038/ng940
pmid: 12134150
Transcription is a slow and expensive process: in eukaryotes, approximately 20 nucleotides can be transcribed per second at the expense of at least two ATP molecules per nucleotide. Thus, at least for highly expressed genes, transcription of long introns, which are particularly common in mammals, is costly. Using data on the expression of genes that encode proteins in Caenorhabditis elegans and Homo sapiens, we show that introns in highly expressed genes are substantially shorter than those in genes that are expressed at low levels. This difference is greater in humans, such that introns are, on average, 14 times shorter in highly expressed genes than in genes with low expression, whereas in C. elegans the difference in intron length is only twofold. In contrast, the density of introns in a gene does not strongly depend on the level of gene expression. Thus, natural selection appears to favor short introns in highly expressed genes to minimize the cost of transcription and other molecular processes, such as splicing.
Expressed Sequence Tags, Transcription, Genetic, Genome, Human, Introns, Gene Expression Regulation, DNA Transposable Elements, Animals, Humans, Selection, Genetic, Caenorhabditis elegans, Caenorhabditis elegans Proteins
Expressed Sequence Tags, Transcription, Genetic, Genome, Human, Introns, Gene Expression Regulation, DNA Transposable Elements, Animals, Humans, Selection, Genetic, Caenorhabditis elegans, Caenorhabditis elegans Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 452 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 107 | |
| downloads | 34 |

Views provided by UsageCounts
Downloads provided by UsageCounts