Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Naturearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2003
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies

Authors: Toshiyuki Mitsui; M. K. Rose; M. K. Rose; D. F. Ogletree; Miquel Salmeron; E. Fomin; E. Fomin;

Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies

Abstract

During reaction, a catalyst surface usually interacts with a constantly fluctuating mix of reactants, products, 'spectators' that do not participate in the reaction, and species that either promote or inhibit the activity of the catalyst. How molecules adsorb and dissociate under such dynamic conditions is often poorly understood. For example, the dissociative adsorption of the diatomic molecule H2--a central step in many industrially important catalytic processes--is generally assumed to require at least two adjacent and empty atomic adsorption sites (or vacancies). The creation of active sites for H2 dissociation will thus involve the formation of individual vacancies and their subsequent diffusion and aggregation, with the coupling between these events determining the activity of the catalyst surface. But even though active sites are the central component of most reaction models, the processes controlling their formation, and hence the activity of a catalyst surface, have never been captured experimentally. Here we report scanning tunnelling microscopy observations of the transient formation of active sites for the dissociative adsorption of H2 molecules on a palladium (111) surface. We find, contrary to conventional thinking, that two-vacancy sites seem inactive, and that aggregates of three or more hydrogen vacancies are required for efficient H2 dissociation.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    298
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 42
    download downloads 19
  • 42
    views
    19
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
298
Top 1%
Top 1%
Top 1%
42
19
Green
hybrid