Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 1986 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

Mantle circulation and the lateral migration of subducted slabs

Authors: Z. Garfunkel; C. A. Anderson; G. Schubert;

Mantle circulation and the lateral migration of subducted slabs

Abstract

The irregular motions of plates and the irregular distribution of plate consumption and generation require that subduction zones and descending lithospheric slabs migrate laterally. Absolute plate motions indicate that slab migration is generally retrograde; that is, it is opposite to the direction of motion of the plates to which the slabs are attached, at rates of 10–25 mm yr−1. As a result, the downward motions of slabs are generally steeper than their dips, probably because of their negative buoyancy relative to the surrounding mantle. An important consequence of lateral slab migration is the displacement of material away from one side of the slab and inward flow of an equal volume toward the other side. This generates a mass flux in the mantle that is comparable in magnitude with the flux involved in the overturn of the oceanic lithosphere. The flow induced by slab migration is, therefore, an important part of the large‐scale mantle circulation associated with plate motions. Two‐dimensional numerical models with retrograde slab migration explicitly prescribed as a boundary condition show that migrating slabs, in contrast with nonmigrating ones, are at an angle to streamlines in the surrounding mantle. Accordingly, the parallelism of Benioff‐Wadati zones and streamlines cannot be used to discriminate among mantle flow models. Laterally migrating slabs do not separate streamlines that turn in different directions at depth, and these slabs do not turn backward beneath the plates to which they are attached. Instead, these slabs become parts of the circulations beneath the overriding plates, and even at depth they continue to move away from their oceanic ridge sources. Migrating slabs do not separate mantle convection cells. The numerical simulations also show that slab migration slows the flow under the attached plate by diverting part of it to the circulation beneath the overriding plate. The enhanced flow under the overriding plate pulls it more forcefully toward the subduction zone by increasing both the magnitude of the basal drag and the length of the overriding plate subject to a trench‐directed drag. This drag on the overriding plate is the source of the “trench suction” force that appears in models of plate‐driving mechanisms. Retrograde slab migration increases trench suction and may, thereby, play an important role in initiating and maintaining back arc spreading. Over long periods of time, migrating slabs sweep out large volumes of the mantle, altering flow patterns and dispersing material to great distances. By preventing the formation of regular closed cells, slab migration helps to mix the mantle and make it more chemically homogeneous. Slab migration is an important factor that causes mantle flow to be geometrically complex and time dependent.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    224
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 83
    download downloads 26
  • 83
    views
    26
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
224
Top 10%
Top 1%
Top 10%
83
26
hybrid