Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geophysical Research...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geophysical Research Letters
Article . 1990 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Geophysical Research Letters
Article
License: CC 0
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Variations in the mode of great earthquake rupture along the Central Peru Subduction Zone

Authors: Susan L. Beck; Stuart P. Nishenko;

Variations in the mode of great earthquake rupture along the Central Peru Subduction Zone

Abstract

The historic record for the central Peru subduction zone suggests significant variations in the earthquake size during the last 400 years. During this century there have been four great underthrusting earthquakes along the central Peru seismic zone. From north to south these are the 17 October 1966 (Mw=8.1), 24 May 1940 (M∼8), 3 October 1974 (Mw=8.1), and 24 August 1942 (M∼8.2) earthquakes. Modified Mercalli intensity data and tsunami observations for the earthquakes in this century are compared with the 29 October 1746 and 20 October 1687 earthquakes. The 1746 earthquake had maximum intensity values between 9° and 13°S while the 1687 event had maximum values between 12° and 14°S suggesting that the two events failed different segments of the subduction zone. We find that the 1746 event occurred along the segiment that includes both 1940 and 1966 earthquakes. The size of the 1746 event is estimated to be Mw ∼8.8 based on the ratio of near‐field tsunami heights for the 1746 and 1966 earthquakes. The 1687 earthquake probably raptured the 1974 segment as well as the adjacent segment to the south where there is at present a gap between the 1942 and 1974 rupture zones. The size of the 1687 event is estimated to be Mw∼8.7 based on both far‐field and near‐field tsunami height ratios of the 1687 and 1974 events. Both 1746 and 1687 earthquakes appear to be much larger than the events of this century. In contrast to the simple, single asperity nature of the 20th century earthquakes, these older and larger events may represent multiple‐asperity ruptures along the Peru subduction zone. Hence, variations in the mode of earthquake rupture from cycle to cycle along the central Peru seismic zone may explain the significant difference in earthquake size during die last 400 years.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 38
    download downloads 11
  • 38
    views
    11
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
28
Top 10%
Top 10%
Average
38
11
gold