Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Reviews of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Reviews of Geophysics
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Reviews of Geophysics
Article . 1994 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

The Earthquake Prediction Experiment at Parkfield, California

Authors: Evelyn Roeloffs; John Langbein;

The Earthquake Prediction Experiment at Parkfield, California

Abstract

Since 1985, a focused earthquake prediction experiment has been in progress along the San Andreas fault near the town of Parkfield in central California. Parkfield has experienced six moderate earthquakes since 1857 at average intervals of 22 years, the most recent a magnitude 6 event in 1966. The probability of another moderate earthquake soon appears high, but studies assigning it a 95% chance of occurring before 1993 now appear to have been over‐simplified. The identification of a Parkfield fault “segment” was initially based on geometric features in the surface trace of the San Andreas fault, but more recent microearthquake studies have demonstrated that those features do not extend to seismogenic depths. On the other hand, geodetic measurements are consistent with the existence of a “locked” patch on the fault beneath Parkfield that has presently accumulated a slip deficit equal to the slip in the 1966 earthquake. A magnitude 4.7 earthquake in October 1992 brought the Parkfield experiment to its highest level of alert, with a 72‐hour public warning that there was a 37% chance of a magnitude 6 event. However, this warning proved to be a false alarm. Most data collected at Parkfield indicate that strain is accumulating at a constant rate on this part of the San Andreas fault, but some interesting departures from this behavior have been recorded. Here we outline the scientific arguments bearing on when the next Parkfield earthquake is likely to occur and summarize geophysical observations to date.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 80
    download downloads 9
  • 80
    views
    9
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
82
Top 10%
Top 10%
Top 10%
80
9
hybrid