Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Chemical ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Chemical Information and Modeling
Article . 2006 . Peer-reviewed
Data sources: Crossref
ZENODO
Article . 2007
Data sources: ZENODO
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prediction of Blood-Βrain Partitioning and Human Serum Albumin Binding Based on COSMO-RS σ-Moments

Authors: Wichmann, Karin; Diedenhofen, Michael; Klamt, Andreas;

Prediction of Blood-Βrain Partitioning and Human Serum Albumin Binding Based on COSMO-RS σ-Moments

Abstract

Models for the prediction of blood-brain partitioning (logBB) and human serum albumin binding (logK(HSA)) of neutral molecules were developed using the set of 5 COSMO-RS sigma-moments as descriptors. These sigma-moments have already been introduced earlier as a general descriptor set for partition coefficients. They are obtained from quantum chemical calculations using the continuum solvation model COSMO and a subsequent statistical decomposition of the resulting polarization charge densities. The model for blood-brain partitioning was built on a data set of 103 compounds and yielded a correlation coefficient of r2 = 0.71 and an rms error of 0.40 log units. The human serum albumin binding model was built on a data set of 92 compounds and achieved an r2 of 0.67 and an rms error of 0.33 log units. Both models were validated by leave-one-out cross-validation tests, which resulted in q2 = 0.68 and a qms error of 0.42 for the logBB model and in q2 = 0.63 and a qms error of 0.35 for the logK(HSA) model. Together with the previously published models for intestinal absorption and for drug solubility the presented two models complete the COSMO-RS based set of ADME prediction models.

Related Organizations
Keywords

Models, Molecular, Quantitative Structure-Activity Relationship, Electrons, Intestinal Absorption, Solubility, Artificial Intelligence, Blood-Brain Barrier, Humans, Quantum Theory, Serum Albumin, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 18
  • 3
    views
    18
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
56
Top 10%
Top 10%
Top 10%
3
18
hybrid