Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Applied Nano Mat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Applied Nano Materials
Article
License: CC BY
Data sources: UnpayWall
ACS Applied Nano Materials
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Role of Chemically Modified DNA in Discrimination of Single-Point Mutation through Plasmon-Based Colorimetric Assays

Authors: María Sanromán-Iglesias; Marek Grzelczak; Marek Grzelczak; Luis M. Liz-Marzán; Charles H. Lawrie;

The Role of Chemically Modified DNA in Discrimination of Single-Point Mutation through Plasmon-Based Colorimetric Assays

Abstract

The use of gold nanoparticles for the colorimetric detection of single nucleotide mutations associated with cancer in liquid biopsies is a promising strategy for early cancer diagnosis. To realize this technology, the sensor must discriminate mutations in double stranded dsDNA with an average length of ∼140 bp. Here, we compared ssDNA and dsDNA of differing lengths (70 and 140 bp) and the effect of chemical modifications (2′-OMe vs 2′-F) on the DNA probe sequence stabilizing gold nanoparticles of either 25 or 53 nm. We confirmed that the performance of the single nucleotide polymorphism (SNP) detection decreases with both the increase of the length of the sequences and the incorporation of dsDNA architecture. We found that for the larger particles the sensitivity of the assay increases, while the selectivity is better for smaller particles. Finally, the presence of 2′-F modification improves the detection of SNP in ssDNA, while 2′-OMe modification is better for SNP detection in dsDNA.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 10
  • 4
    views
    10
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
10
Top 10%
Average
Top 10%
4
10
Green
hybrid
Related to Research communities
Cancer Research