Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomedicine & Pharma...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomedicine & Pharmacotherapy
Article . 1998 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomedicine & Pharmacotherapy
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 1998
License: CC 0
Data sources: ZENODO
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The 2-5A system in viral infection and apoptosis

Authors: Castelli, J.; Wood, Ka; Youle, Rj;

The 2-5A system in viral infection and apoptosis

Abstract

The 2-5A system is an established endogenous antiviral pathway. Interferon treatment of cells leads to an increase in basal, but latent, levels of 2-5A-dependent RNase (RNase L) and the family of 2'-5' oligoadenylate synthetases (OAS). Double-stranded RNA, thought to be derived from viral replication intermediates, activates OAS. Activated OAS converts ATP into unusual short 2'-5' linked oligoadenylates called 2-5A [ppp5'(A2'p5')2A]. The 2-5A binds to and activates RNase L which cleaves single stranded RNA with moderate specificity for sites 3' of UpUp and UpAp sequences, and thus leads to degradation of cellular rRNA. During apoptosis, generalized cellular RNA degradation, distinct from the differential expression of mRNA species that may regulate specific gene expression during apoptosis, has been observed. The mechanism of RNA breakdown during apoptosis has been commonly considered a non-specific event that reflects the generalized shut down of translation and homeostatic regulation during cell death. Due to the similar RNA degradation that occurs during both apoptosis and viral infection we investigated the potential role of RNase L in apoptosis. To investigate whether RNase L activity could lead to apoptosis, NIH3T3 cells were transfected with a lac-inducible vector containing the human RNase L gene. Treatment of these cells with isopropylthiogalactoside (IPTG) caused loss of cell viability that was confirmed as an apoptotic cell death by morphological and biochemical criteria. Similarly, specific allosteric activation of endogenous RNase L by introduction of 2-5A directly into L929 cells also induced apoptosis. In L929 cells poly(I).poly(C) treatment in combination with interferon caused an increase in apoptosis whereas neither interferon or double stranded RNA alone altered cell viability. Therefore, increased expression or activation of RNase L causes apoptosis. Inhibition of RNase L, specifically with a dominant negative mutant, suppressed poly(I)Ypoly(C)-induced apoptosis in interferon-primed fibroblasts. Poliovirus, a picornovirus with a single-stranded RNA genome, causes apoptosis of HeLa cells. Expression of the dominant negative inhibitor of RNase L in HeLa prevented virus-induced apoptosis and maintained cell viability. Thus, reduction or inhibition of RNase L activity prevents apoptosis. Both apoptosis and the 2-5A system can provide defense against viral infection in multicellular organisms by preventing production and therefore spread of progeny virus. RNase L appears to function in both mechanisms, therefore, initiation of apoptosis may be one mechanism for the antiviral activity of the 2-5A system.

Keywords

Oligoribonucleotides, Adenine Nucleotides, Virus Diseases, Endoribonucleases, Animals, Humans, RNA, Apoptosis, Antiviral Agents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 45
    download downloads 23
  • 45
    views
    23
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
88
Top 10%
Top 10%
Top 10%
45
23
Green
gold