Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Bioche...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular and Biochemical Parasitology
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Biochemical Parasitology
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A phylogenetic comparison of gene trees constructed from plastid, mitochondrial and genomic DNA of Plasmodium species

Authors: Margery Sullivan; Dharmendar Rathore; Allison M. Wahl; Thomas F. McCutchan;

A phylogenetic comparison of gene trees constructed from plastid, mitochondrial and genomic DNA of Plasmodium species

Abstract

Gene trees of Plasmodium species have been reported for the nuclear encoded genes (e.g. the Small Subunit rRNA) and a mitochondrial encoded gene, cytochrome b. Here, we have analyzed a plastid gene coding for caseinolytic protease ClpC, whose structure, function and evolutionary history have been studied in various organisms. This protein possesses a 220-250 amino acid long AAA domain (ATPases associated with a variety of cellular activities) that belongs to the Walker super family of ATPases and GTPases. We have sequenced the AAA motif of this gene, encoding the protein from nine different species of Plasmodium infecting rodents, birds, monkeys, and humans. The codon usage and GC content of each gene were nearly identical in contrast to the widely varying nucleotide composition of genomic DNAs. Phylogenetic trees derived from both DNA and inferred protein sequences have consistent topologies. We have used the ClpC sequence to analyze the phylogenetic relationship among Plasmodium species and compared it with those derived from mitochondrial and genomic sequences. The results corroborate well with the trees constructed using the mitochondrially encoded cytochrome b. However, an important element distinguishes the trees: the placement of Plasmodium elongatum near the base of the plastid tree, indicating an ancient lineage of parasites in birds that branches from the tree prior to other lineages of avian malaria and the human parasite, P. falciparum.

Keywords

Adenosine Triphosphatases, Cell Nucleus, Plasmodium, Genes, Protozoan, Molecular Sequence Data, Rodentia, Haplorhini, DNA, Protozoan, Cytochrome b Group, DNA, Mitochondrial, DNA, Ribosomal, Mitochondria, Birds, Evolution, Molecular, Animals, Humans, Amino Acid Sequence, Plastids, Phylogeny, Peptide Hydrolases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 90
    download downloads 33
  • 90
    views
    33
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
70
Top 10%
Top 10%
Top 10%
90
33
Green
hybrid