Downloads provided by UsageCounts
pmid: 14587871
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) causes neoplastic transformation of human T-cells in a small number of infected individuals several years from infection. Several viral proteins act in concert to increase the responsiveness of T-cells to extracellular stimulation, modulate proapoptotic and antiapoptotic gene signals, enhance T-cell survival, and avoid immune recognition of the infected T-cells. The virus promotes T-cell proliferation by usurping several signaling pathways central to immune T-cell function. Viral proteins modulate the downstream effects of antigen stimulation and receptor-ligand interaction, suggesting that extracellular signals are important for HTLV-1 oncogenesis. Environmental factors such as chronic antigen stimulation are therefore important, as also suggested by epidemiological data. The ability of a given individual to respond to specific antigens is determined genetically. Thus, genetic and environmental factors, together with the virus, contribute to disease development. As in the case of other virus-associated cancers, HTLV-1-induced leukemia/lymphoma can be prevented by avoiding viral infection or by intervention during the asymptomatic phase with approaches able to interrupt the vicious cycle of virus-induced proliferation of a subset of T-cells. This review focuses on current knowledge of the mechanisms regulating HTLV-1 replication and the T-cell pathways that are usurped by viral proteins to induce and maintain clonal proliferation of infected T-cells in vitro. The relevance of these laboratory findings will be related to clonal T-cell proliferation and adult T-cell leukemia/lymphoma development in vivo.
Human T-lymphotropic virus 1, DNA Repair, Models, Genetic, T-Lymphocytes, Cell Cycle, Nucleic Acid Hybridization, Apoptosis, Gene Products, tax, Genome, Viral, Models, Biological, Open Reading Frames, Humans, Tumor Suppressor Protein p53, Oligonucleotide Array Sequence Analysis
Human T-lymphotropic virus 1, DNA Repair, Models, Genetic, T-Lymphocytes, Cell Cycle, Nucleic Acid Hybridization, Apoptosis, Gene Products, tax, Genome, Viral, Models, Biological, Open Reading Frames, Humans, Tumor Suppressor Protein p53, Oligonucleotide Array Sequence Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 69 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 71 | |
| downloads | 27 |

Views provided by UsageCounts
Downloads provided by UsageCounts