Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Urban Mob...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Urban Mobility
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Urban Mobility
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-Attention based encoder-Decoder for multistep human density prediction

Authors: John Violos; Theodoros Theodoropoulos; Angelos-Christos Maroudis; Aris Leivadeas; Konstantinos Tserpes;

Self-Attention based encoder-Decoder for multistep human density prediction

Abstract

Multistep Human Density Prediction (MHDP) is an emerging challenge in urban mobility with lots of applications in several domains such as Smart Cities, Edge Computing and Epidemiology Modeling. The basic goal is to estimate the density of people gathered in a set of urban Regions of Interests (ROIs) or Points of Interests (POIs) in a forecast horizon of different granularities. Accordingly, this paper aims to contribute and go beyond the existing literature on human density prediction by proposing an innovative time series Deep Learning (DL) model and a geospatial feature preprocessing technique. Specifically, our research aim is to develop a highly-accurate MHDP model leveraging jointly the temporal and spatial components of mobility data. In the beginning, we compare 29 baseline and state-of-the-art methods grouped into six categories and we find that the statistical time series and Deep Learning Encoders-Decoders (ED) that we propose are highly accurate outperforming the other models based on a real and a synthetic mobility dataset. Our model achieves an average of 28.88 Mean Absolute Error (MAE) and 87.58 Root Mean Squared Error (RMSE) with 200,000 pedestrians per day distributed in multiple regions of interest in a 30 minutes time-window at different granularities. In addition, the geospatial feature transformation increases 4% further the RMSE of the proposed model compared to the state of the art solutions. Hence, this work provides an efficient and at the same time general applicable MHDP model that can benefit the planning and decision-making of many major urban mobility applications.

Keywords

Mobility, Transportation engineering, Self attention, Points of interest, Time series, TA1001-1280, HT165.5-169.9, Deep learning, Encoder-decoder, City planning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 17
  • 4
    views
    17
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
3
Top 10%
Average
Average
4
17
gold