Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Science of The T...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Science of The Total Environment
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
http://dx.doi.org/10.1016/j.sc...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A review on nitrous oxide (N 2 O) emissions during biological nutrient removal from municipal wastewater and sludge reject water

Authors: Massara, Theoni Maria; Malamis, Simos; Guisasola, Albert; Baeza, Juan Antonio; Noutsopoulos, Constantinos; Katsou, Evina;

A review on nitrous oxide (N 2 O) emissions during biological nutrient removal from municipal wastewater and sludge reject water

Abstract

Nitrous oxide (N2O) is an important pollutant which is emitted during the biological nutrient removal (BNR) processes of wastewater treatment. Since it has a greenhouse effect which is 265 times higher than carbon dioxide, even relatively small amounts can result in a significant carbon footprint. Biological nitrogen (N) removal conventionally occurs with nitrification/denitrification, yet also through advanced processes such as nitritation/denitritation and completely autotrophic N-removal. The microbial pathways leading to the N2O emission include hydroxylamine oxidation and nitrifier denitrification, both activated by ammonia oxidizing bacteria, and heterotrophic denitrification. In this work, a critical review of the existing literature on N2O emissions during BNR is presented focusing on the most contributing parameters. Various factors increasing the N2O emissions either per se or combined are identified: low dissolved oxygen, high nitrite accumulation, low chemical oxygen demand to nitrogen ratio, slow growth of denitrifying bacteria, uncontrolled pH and temperature. However, there is no common pattern in reporting the N2O generation amongst the cited studies, a fact that complicates its evaluation. When simulating N2O emissions, all microbial pathways along with the potential contribution of abiotic N2O production during wastewater treatment at different dissolved oxygen/nitrite levels should be considered. The undeniable validation of the robustness of such models calls for reliable quantification techniques which simultaneously describe dissolved and gaseous N2O dynamics. Thus, the choice of the N-removal process, the optimal selection of operational parameters and the establishment of validated dynamic models combining multiple N2O pathways are essential for studying the emissions mitigation.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    271
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 14
    download downloads 2
  • 14
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
271
Top 0.1%
Top 1%
Top 1%
14
2
hybrid