Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Science of Computer ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science of Computer Programming
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Science of Computer Programming
Article . 2014 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PolyPublie
Article . 2014
Data sources: PolyPublie
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cultural scene detection using reverse Louvain optimization

Authors: Mohammad Hamdaqa; Ladan Tahvildari; Neil LaChapelle; Brian Campbell;

Cultural scene detection using reverse Louvain optimization

Abstract

This paper proposes a novel approach for discovering cultural scenes in social network data. "Cultural scenes" are aggregations of people with overlapping interests, whose loosely interacting activities from virtuous cycles amplify cultural output (e.g., New York art scene, Silicon Valley startup scene, Seattle indie music scene). They are defined by time, place, topics, people and values. The positive socioeconomic impact of scenes draws public and private sector support to them. They could also become the focus for new digital services that fit their dynamics; but their loose, multidimensional nature makes it hard to determine their boundaries and community structure using standard social network analysis procedures. In this paper, we: (1) propose an ontology for representing cultural scenes, (2) map a dataset to the ontology, and (3) compare two methods for detecting scenes in the dataset. The first method takes a hard clustering approach. We derive three weighted, undirected graphs from three similarity analyses; linking people by topics, topics by people, and places by people. We partition each graph using Louvain optimization, overlap them, and let their inner joint represent core scene elements. The second method introduces a novel soft clustering approach. We create a "scene graph": a single, unweighted, directed graph including all three node classes (people, places, topics). We devise a new way to apply Louvain optimization to such a graph, and use filtering and fan-in/out analysis to identify the core. Both methods detect core clusters with precision, but Method One misses some peripherals. Method Two evinces better recall, advancing our knowledge about how to represent and analyze scenes. We use Louvain optimization recursively to successfully find small clusters. Formalized an ontology for graphing socio-cultural "scenes" in Meetup data.Created a k-partite, directed "scene graph" of all data (people, place, topic).Applied Louvain optimization recursively "in reverse" to partition the graph.Compared with overlap analysis of three weighted, undirected graphs."Reverse Louvain" offered same precision, better recall of scene data.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 206
    download downloads 21
  • 206
    views
    21
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
12
Top 10%
Average
Average
206
21
hybrid