Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuropeptidesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuropeptides
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2008
License: CC 0
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuropeptides
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Neuropeptides
Article . 2008
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modulatory role of neuropeptide FF system in nociception and opiate analgesia

Authors: Yang, Hsiu-Ying T.; Tao, Tao; Iadarola, Michael J.;

Modulatory role of neuropeptide FF system in nociception and opiate analgesia

Abstract

The tetra-peptide FMRF-NH(2) is a cardioexcitatory peptide in the clam. Using the antibody against this peptide, FMRF-NH(2)-like immunoreactive material was detected in mammalian CNS. Subsequently, mammalian FMRF-NH(2) immunoreactive peptides were isolated from bovine brain and characterized to be FLFQPQRF-NH(2) (NPFF) and AGEGLSSPFWSLAAPQRF-NH(2) (NPAF). The genes encoding NPFF precursor proteins and NPFF receptors 1 and 2 are expressed in all vertebrate species examined to date and are highly conserved. Among many biological roles suggested for the NPFF system, the possible modulatory role of NPFF in nocicetion and opiate analgesia has been most widely investigated. Pharmacologically, NPFF-related peptides were found to exhibit analgesia and also potentiate the analgesic activity of opiates when administered intrathecally but attenuate the opiate induced analgesia when administered intracerebroventricularly. RF-NH(2) peptides including NPFF-related peptides were found to delay the rate of acid sensing ion channels (ASIC) desensitization resulting in enhancing acid gated currents, raising the possibility that NPFF also may have a pain modulatory role through ASIC. The genes for NPFF as well as NPFF-R2, preferred receptor for NPFF, are highly unevenly expressed in the rat CNS with the highest levels localized to the superficial layers of the dorsal spinal cord. These two genes are also present in the dorsal root ganglia (DRG), though at low levels in normal rats. NPFF and NPFF-R2 mRNAs were found to be coordinately up-regulated in spinal cord and DRG of rats with peripheral inflammation. In addition, NPFF-R2 immunoreactivity in the primary afferents was increased by peripheral inflammation. The findings from the early studies on the analgesic and morphine modulating activities suggested a role for NPFF in pain modulation and this possibility is further supported by the distribution of NPFF and its receptor and the regulation of the NPFF system in vivo.

Keywords

Receptors, Neuropeptide, Molecular Sequence Data, Membrane Proteins, Nociceptors, Pain, Nerve Tissue Proteins, Sodium Channels, Acid Sensing Ion Channels, Analgesics, Opioid, Animals, Humans, Amino Acid Sequence, Oligopeptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 81
    download downloads 23
  • 81
    views
    23
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
101
Top 10%
Top 10%
Top 10%
81
23
Green
hybrid