Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuropharmacologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuropharmacology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuropharmacology
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Native glycine receptor subtypes and their physiological roles

Authors: Lynch, Joseph W.;

Native glycine receptor subtypes and their physiological roles

Abstract

The glycine receptor chloride channel (GlyR), a member of the pentameric Cys-loop ion channel receptor family, mediates inhibitory neurotransmission in the spinal cord, brainstem and retina. They are also found presynaptically, where they modulate neurotransmitter release. Functional GlyRs are formed from a total of five subunits (alpha1-alpha4, beta). Although alpha subunits efficiently form homomeric GlyRs in recombinant expression systems, homomeric alpha1, alpha3 and alpha4 GlyRs are weakly expressed in adult neurons. In contrast, alpha2 homomeric GlyRs are abundantly expressed in embryonic neurons, although their numbers decline sharply by adulthood. Numerous lines of biochemical, biophysical, pharmacological and genetic evidence suggest the majority of glycinergic neurotransmission in adults is mediated by heteromeric alpha1beta GlyRs. Immunocytochemical co-localisation experiments suggest the presence of alpha2beta, alpha3beta and alpha4beta GlyRs at synapses in the adult mouse retina. Immunocytochemical and electrophysiological evidence also implicates alpha3beta GlyRs as important mediators of glycinergic inhibitory neurotransmission in nociceptive sensory neuronal circuits in peripheral laminae of the spinal cord dorsal horn. It is yet to be determined why multiple GlyR synaptic subtypes are differentially distributed in these and possibly other locations. The development of pharmacological agents that can discriminate strongly between different beta subunit-containing GlyR isoforms will help to address this issue, and thereby provide important insights into a variety of central nervous system functions including retinal signal processing and spinal pain mechanisms. Finally, agents that selectively potentiate different GlyR isoforms may be useful as therapeutic lead compounds for peripheral inflammatory pain and movement disorders such as spasticity.

Keywords

Neurosciences, 110903 Central Nervous System, 610, C1, Receptors, Glycine, Animals, Humans, 920111 Nervous System and Disorders, Pharmacology & Pharmacy, Neurosciences & Neurology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    342
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 46
    download downloads 49
  • 46
    views
    49
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
342
Top 1%
Top 1%
Top 1%
46
49
hybrid