Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuropharmacologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuropharmacology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuropharmacology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Functional differences between NPFF1 and NPFF2 receptor coupling: High intrinsic activities of RFamide-related peptides on stimulation of [35S]GTPγS binding

Authors: Gouardères, N; Mazarguil, H.; Mollereau, C.; Chartrel, N.; Leprince, Jérôme; Vaudry, H.; Zajac, J-M; +1 Authors

Functional differences between NPFF1 and NPFF2 receptor coupling: High intrinsic activities of RFamide-related peptides on stimulation of [35S]GTPγS binding

Abstract

By using an optimized [(35)S]GTPgammaS binding assay, the functional activities (potency and efficacy) of peptides belonging to three members of the RFamide family; Neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP) and 26RFamide, were investigated on NPFF(1) and NPFF(2) receptors stably expressed in Chinese Hamster Ovary (CHO) cells. Despite their large differences in affinity and selectivity, all analogues tested behaved as agonists toward NPFF(1) and NPFF(2) receptors. High NaCl concentration in the assay strongly increased the efficacy toward NPFF(2) receptors and augmented differences among agonists. In low sodium conditions, whereas the potencies of agonists correlated with their affinities for NPFF(1) receptors, NPFF(2) receptors exhibited an extraordinary activity since all compounds tested displayed EC(50) values of GTPgammaS binding lower than their K(I) values. Comparisons of functional values between NPFF(1) and NPFF(2) receptors revealed unexpected potent selective NPFF(2) agonists especially for the PLRFamide and the VGRFamide sequences. By using blocker peptides, we also show that Galpha(i3) and Galpha(s) are the main transducers of NPFF(1) receptors while NPFF(2) are probably coupled with Galpha(i2), Galpha(i3), Galpha(o) and Galpha(s) proteins. Our data indicate that NPPF(1) and NPFF(2) receptors are differently coupled to G proteins in CHO cells.

Country
France
Keywords

Receptors, Neuropeptide, 570, MESH: Isotopes, MESH: Drug Interactions, [SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology, MESH: Cricetinae, MESH: Dose-Response Relationship, 610, [CHIM.THER]Chemical Sciences/Medicinal Chemistry, CHO Cells, MESH: Neuropeptides, Cricetulus, MESH: Cricetulus, Isotopes, MESH: CHO Cells, Cricetinae, MESH: Radionuclide Imaging, [SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB], MESH: Receptors, MESH: Protein Binding, Animals, Humans, MESH: Animals, Drug Interactions, Radionuclide Imaging, MESH: Humans, Dose-Response Relationship, Drug, Cell Membrane, Neuropeptides, MESH: Saponins, MESH: GTP-Binding Protein alpha Subunits, Saponins, GTP-Binding Protein alpha Subunits, Neuropeptide, MESH: Guanosine 5'-O-(3-Thiotriphosphate), Guanosine 5'-O-(3-Thiotriphosphate), [SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/Pharmacology, Drug, MESH: Cell Membrane, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 33
    download downloads 18
  • 33
    views
    18
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
93
Top 10%
Top 10%
Top 10%
33
18
hybrid