Downloads provided by UsageCounts
pmid: 22023990
The mechanism of Cronobacter pathogenesis in neonatal meningitis and potential virulence factors (aside from host cell invasion ability) remain largely unknown. To ascertain whether Cronobacter can invade and transcytose across intestinal epithelial cells, enter into the blood stream and then transcytose across the blood-brain-barrier, we have utilized human intestinal INT407 and Caco-2 cells and brain microvascular endothelial cell (HBMEC) monolayers on Transwell filters as experimental model systems. Our data indicate a wide range of heterogeneity with respect to invasion efficiency among twenty-three Cronobacter isolates screened. For selected isolates, we observed significant levels of transcytosis for Cronobacter sakazakii across tight monolayers of both Caco-2 and HBMEC, mimicking in vivo ability to cross the intestine as well as the blood brain barrier, and at a frequency equivalent to that of a control meningitis-causing Escherichia coli K1 strain. Finally, EM analysis demonstrated intracellular Cronobacter bacteria within host vacuoles in HBMEC, as well as transcytosed bacteria at the basolateral surface. These data reveal that certain Cronobacter isolates can invade and translocate across both cultured human intestinal epithelial cells and HBMEC, thus demonstrating a potential path for neonatal infections of the central nervous system (CNS) following oral ingestion.
Cytoplasm, Virulence, Endothelial Cells, Epithelial Cells, Cell Line, Intestines, Microscopy, Electron, Cronobacter, Vacuoles, Escherichia coli, Humans, Transcytosis
Cytoplasm, Virulence, Endothelial Cells, Epithelial Cells, Cell Line, Intestines, Microscopy, Electron, Cronobacter, Vacuoles, Escherichia coli, Humans, Transcytosis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 51 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 45 | |
| downloads | 31 |

Views provided by UsageCounts
Downloads provided by UsageCounts