Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Ageing...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Ageing and Development
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Ageing and Development
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cellular dynamics and modulation of WRN protein is DNA damage specific

Authors: Parimal, Karmakar; Vilhelm A, Bohr;

Cellular dynamics and modulation of WRN protein is DNA damage specific

Abstract

The human premature aging protein Werner (WRN), deficient in Werner syndrome (WS), is localized mainly to the nucleolus in many cell types. DNA damage or replication arrest causes WRN to redistribute from the nucleolus to the nucleoplasm into discrete foci. In this study, we have investigated DNA damage specific cellular redistribution of WRN. In response to agents causing DNA double strand breaks or DNA base damage, WRN is re-distributed from the nucleolus to the nucleoplasm in a reversible manner. However, after ultraviolet (UV) irradiation such redistribution of WRN is largely absent. We also show that WRN is associated with the insoluble protein fraction of cells after exposure to various kinds of DNA damage but not after UV irradiation. Further, we have studied the DNA damage specific post-translational modulation of WRN. Our results show that WRN is acetylated after mytomycin C or methyl methane-sulfonate treatment, but not after UV irradiation. Also, DNA damage specific phosphorylation of WRN is absent in UV irradiated cells. Inhibition of phosphorylation fails to restore WRN localization. Thus, our results suggest that the dynamics of WRN protein trafficking is DNA damage specific and is related to its post-translational modulation. The results also indicate a preferred role of WRN in recombination and base excision repair rather than nucleotide excision repair.

Keywords

Werner Syndrome Helicase, DNA Repair, RecQ Helicases, DNA Helicases, DNA, Cell Fractionation, Androstadienes, Exodeoxyribonucleases, Humans, Werner Syndrome, Wortmannin, Protein Kinase Inhibitors, Cell Nucleolus, DNA Damage, HeLa Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 38
    download downloads 18
  • 38
    views
    18
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
46
Top 10%
Top 10%
Top 10%
38
18
hybrid