Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Archaeolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Archaeological Science
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Archaeological Science
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of XRF and PXRF for analysis of archaeological obsidian from southern Perú

Authors: Craig, Nathan; Speakman, Robert J; Popelka-Filcoff, Rachel Sarah; Glascock, Michael D; Shackley, M Steven; Aldenderfer, Mark; Robertson, J David;

Comparison of XRF and PXRF for analysis of archaeological obsidian from southern Perú

Abstract

Abstract Chemical sourcing is becoming an increasingly important component of archaeological investigation. Instruments used for elemental analysis generally must be operated in a controlled laboratory environment. Further, many methods require destruction of a small portion of the objects under investigation. These facts inhibit the application of chemical sourcing studies in a number of research contexts. Use of portable non-destructive instruments would resolve these issues. Sixty-eight obsidian artifacts from the site of Jiskairumoko, in southern Peru, were examined by X-ray fluorescence spectrometry (XRF) and portable X-ray fluorescence spectrometry (PXRF). Results were compared for consistency in terms of source determination and individual element concentrations. Both instruments determined that the same sixty-six artifacts derived from the Chivay obsidian source and both identified the same two artifacts that could not be assigned to source. Individual element comparisons showed significant differences, but these can be resolved through instrument cross calibration, and differences had no bearing on source identification. PXRF was found suitable for determining obsidian sources in southern Peru and for identifying specimens that require more sensitive analytical methods such as, instrumental neutron activation analysis (INAA). Regular use of Chivay at Jiskairumoko suggests consistent trade relationships developed during the Archaic.

Country
Australia
Keywords

0301 Analytical Chemistry, 2101 Archaeology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    163
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 43
    download downloads 27
  • 43
    views
    27
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
163
Top 1%
Top 1%
Top 10%
43
27
hybrid