Downloads provided by UsageCounts
Abstract Equiatomic, face-centered-cubic, high- and medium-entropy alloys were arc melted, hot-rolled to produce recrystallized sheets, and tensile tested. The alloys having the compositions CrMnFeCoNi and CrFeCoNi exhibited a strong temperature-dependent decrease in strength with increasing temperature from −196 °C to 1000 °C, and a relatively weak strain-rate dependence (at 10 −3 and 10 −1 s −1 ). Ductility did not vary inversely with yield strength; rather, when strength doubled as the test temperature was decreased from room temperature to −196 °C, elongation to fracture increased by a factor of 1.5 to >60%. A high degree of work hardening, possibly due to deformation-induced nanotwinning, postpones the onset of necking and may be the reason for the ductility increase.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.01% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 122 | |
| downloads | 103 |

Views provided by UsageCounts
Downloads provided by UsageCounts