Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Engineering Structur...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Engineering Structures
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Engineering Structures
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Engineering Structures
Article . 2021 . Peer-reviewed
http://dx.doi.org/10.1016/j.en...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Static and fatigue test on lightweight UHPC-OSD composite bridge deck system subjected to hogging moment

Authors: Feng Zheng; George Vasdravellis; Jun He; Jun He; Lei Zhijie; Lu Ke; Chuanxi Li;

Static and fatigue test on lightweight UHPC-OSD composite bridge deck system subjected to hogging moment

Abstract

Abstract A cost-effective Lightweight Composite Bridge Deck (LCBD) system, including Orthotropic Steel Deck (OSD) and lightweight Ultra-High Performance Concrete (UHPC) layer is proposed to increase the stiffness and fatigue performance of conventional OSD. Static and fatigue tests on two full-scale strip models subjected to four-point bending were carried out. The static nominal cracking stress of the UHPC layer with reinforcement spacing of 80 mm is 24.59 MPa, while it increases to 35.68 MPa when the reinforcement spacing is reduced to half (40 mm); both values are far greater than the nominal stress of 12.7 MPa obtained in the prototype bridge. Increasing the reinforcement ratio can increase the bending stiffness of LCBD and decrease the tensile strain of the UHPC layer, while the change in range is relative slight. Furthermore, the flexural strength of UHPC and the reinforcement ratio are important factors affecting the fatigue life of the UHPC layer. When the reinforcement spacing increases from 40 mm to 80 mm, the fatigue life of the UHPC layer still satisfies related code requirements. Thus, for reduction in the engineering cost and construction complexity, the reinforcement spacing can be set as 80 mm. However, the application of the UHPC as the steel deck pavement, the rib-to-diaphragm welded joint is still prone to fatigue cracks. In addition, the existing S-N curves are hard to directly use for fatigue life prediction of the UHPC layer because of the great differences in the definition of stress level and evaluation index of failure in the fatigue test, which need to be modified in further studies.

Related Organizations
Keywords

lightweight composite bridge deck, Bridge engineering, UHPC

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 15
    download downloads 17
  • 15
    views
    17
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
51
Top 10%
Top 10%
Top 1%
15
17
Green
hybrid