Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Padua research Archi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computer Methods and Programs in Biomedicine
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://dx.doi.org/10.1016/j.cm...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Risk of hypoglycemia in type 1 diabetes management: An in-silico sensitivity analysis to assess and rank the quantitative impact of different behavioral factors

Authors: Chiara Roversi; Nunzio Camerlingo; Martina Vettoretti; Andrea Facchinetti; Pratik Choudhary; Giovanni Sparacino; Simone Del Favero;

Risk of hypoglycemia in type 1 diabetes management: An in-silico sensitivity analysis to assess and rank the quantitative impact of different behavioral factors

Abstract

In type 1 diabetes (T1D), a quantitative evaluation of the impact on hypoglycemia of suboptimal therapeutic decision (e.g. incorrect estimation of the ingested carbohydrates, inaccurate insulin timing, etc) is unavailable. Clinical trials to measure sensitivity to patient actions would be expensive, exposed to confounding factors and risky for the participants. In this work, a T1D patient decision simulator (T1D-PDS), realistically reproducing blood glucose dynamics in a large virtual population, is used to perform extensive in-silico trials and the so-derived data employed to implement a sensitivity analysis that ranks different behavioral factors based on their impact on a clinically meaningful parameter, the time below range (TBR).Eleven behavioral factors impacting on hypoglycemia are considered. The T1D-PDS was used to perform multiple 2-week simulations involving 100 adults, by testing about 3500 different perturbations for nominal behavior. A local linear approximation of the function linking the TBR and the factors were computed to derive sensitivity indices (SIs), quantifying the impact of each factor on TBR variations.The obtained ranking quantifies importance of factors w.r.t. the others. Factors apparently related to hypoglycemia were correctly placed on the top of the ranking, including systematic (SI=2.05%) and random (SI=1.35%) carb-counting error, hypotreatment dose (SI=-1.21%), insulin bolus time w.r.t. mealtime (SI=1.09%).The obtained SIs allowed to rank behavioral factors based on their impact on TBR. The behavioral factors identified as most influential can be prioritized in patient training.

Countries
Italy, Italy
Related Organizations
Keywords

Adult, Blood Glucose, Diabetes Mellitus, Type 1, Blood Glucose Self-Monitoring, Humans, Hypoglycemic Agents, Insulin, Hypoglycemia; In-silico trials; Multiple linear regression; Patient behavior; Sensitivity analysis; Type 1 diabetes, Hypoglycemia

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid
Related to Research communities