Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brain Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Brain Research
Article
License: CC BY SA
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Brain Research
Article . 2005
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mapping the neural circuit activated by alarm pheromone perception by c-Fos immunohistochemistry

Authors: Yuji Mori; Takefumi Kikusui; Yukari Takeuchi; Yasushi Kiyokawa;

Mapping the neural circuit activated by alarm pheromone perception by c-Fos immunohistochemistry

Abstract

We previously reported that the alarm pheromones released from stressed male rats exaggerated both behavioral and autonomic (stress-induced hyperthermia) responses in recipient rats that were introduced into a novel environment. Subsequent experiments provided evidence that these alarm pheromones could be divided into two functionally different categories based on the site specificity and testosterone dependency of their production. However, the neural mechanisms underlying these behavioral and physiological responses remain unknown. In the present study, we examined Fos expression in 26 brain sites of the recipient rat 60 min after the exposure to the pheromone that aggravated stress-induced hyperthermia. The alarm pheromone-exposed rats showed a concurrent increase in Fos expression, in contrast to control odor-exposed rats in the anterior division lateral and medial group of the bed nucleus of the stria terminalis, paraventricular nucleus, dorsomedial hypothalamic nucleus, anterodorsal medial, lateral and basolateral amygdaloid nucleus, ventrolateral periaqueductal gray, laterodorsal tegmental nucleus, and locus coeruleus. These results provide information about the neural mechanisms in response to a non-sexual pheromone, i.e., an alarm pheromone, and suggest that the perception of the alarm pheromone is related to stress-responsive brains structures, including the hypothalamus and brainstem, as well as to the amygdaloid nuclei.

Related Organizations
Keywords

Male, Neurons, Brain Mapping, Fever, Amygdala, Immunohistochemistry, Pheromones, Rats, Smell, Stress, Physiological, Neural Pathways, Odorants, Animals, Perception, Septal Nuclei, Rats, Wistar, Proto-Oncogene Proteins c-fos

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 169
    download downloads 32
  • 169
    views
    32
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
62
Top 10%
Top 10%
Top 10%
169
32
Green
hybrid