Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Deciphering B-ZIP transcription factor interactions in vitro and in vivo

Authors: Charles, Vinson; Asha, Acharya; Elizabeth J, Taparowsky;

Deciphering B-ZIP transcription factor interactions in vitro and in vivo

Abstract

Over the last 15 years, numerous studies have addressed the structural rules that regulate dimerization stability and dimerization specificity of the leucine zipper, a dimeric parallel coiled-coil domain that can either homodimerize or heterodimerize. Initially, these studies were performed with a limited set of B-ZIP proteins, sequence-specific DNA binding proteins that dimerize using the leucine zipper domain to bind DNA. A global analysis of B-ZIP leucine zipper dimerization properties can be rationalized using a limited number of structural rules [J.R. Newman, A.E. Keating, Comprehensive identification of human bZIP interactions with coiled-coil arrays, Science 300 (2003) 2097-2101]. Today, however, access to the genomic sequences of many different organisms has made possible the annotation of all B-ZIP proteins from several species and has generated a bank of data that can be used to refine, and potentially expand, these rules. Already, a comparative analysis of the B-ZIP proteins from Arabidopsis thaliana and Homo sapiens has revealed that the same amino acids are used in different patterns to generate diverse B-ZIP dimerization patterns [C.D. Deppmann, A. Acharya, V. Rishi, B. Wobbes, S. Smeekens, E.J. Taparowsky, C. Vinson, Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs, Nucleic Acids Res. 32 (2004) 3435-3445]. The challenge ahead is to investigate the biological significance of different B-ZIP protein-protein interactions. Gaining insight at this level will rely on ongoing investigations to (a) define the role of target DNA on modulating B-ZIP dimerization partners, (b) characterize the B-ZIP transcriptome in various cells and tissues through mRNA microarray analysis, (c) identify the genomic localization of B-ZIP binding at a genomic level using the chromatin immunoprecipitation assay, and (d) develop more sophisticated imaging technologies to visualize dimer dynamics in single cells and whole organisms. Studies of B-ZIP family leucine zipper dimerization and the regulatory mechanisms that control their biological activities could serve as a paradigm for deciphering the biophysical and biological parameters governing other well-characterized protein-protein interaction motifs. This review will focus on the dimerization specificity of coiled-coil proteins, particularly the human B-ZIP transcription family that consists of 53 proteins that use the leucine zipper coiled-coil as a dimerization motif.

Keywords

Amino Acid Motifs, Nuclear Proteins, RNA-Binding Proteins, Thermodynamics, Amino Acid Sequence, DNA, Dimerization, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    173
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 49
    download downloads 49
  • 49
    views
    49
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
173
Top 10%
Top 10%
Top 10%
49
49
hybrid